Abstract
Image reconstruction from a sequence of a few linear measurements that are corrupted by signal-dependent normally distributed noise is an inverse problem with many biomedical imaging applications, such as computerized tomography and optical microscopy. In this study, we focus on single-pixel imaging, where the set-up acquires a down-sampled Hadamard transform of an image of the scene. Deep learning is a computationally efficient framework to solve inverse problems in imaging. Several neural-network architectures provide a link between deep and optimization-based image reconstruction methods. These deep-learning methods rely on a forward operator and lead to more interpretable networks. Here, we propose a novel network architecture obtained by unrolling an heuristic expectation-maximization algorithm. In particular, we compute the maximum <i>a posteriori</i> estimate of the unknown image given measurements corrupted by normally distributed signal-dependent noise. We show that the so-called expectation-maximization reconstruction network (EM-Net) applies to mixed Skellam-Gaussian noise models that are common in single-pixel imaging. We present reconstruction results from simulated and experimental single-pixel acquisitions. We show that EM-Net generalizes very well to noise levels not seen during training, despite having fewer learned parameters than alternative methods. The proposed EM-Net generally reconstructs images with fewer artifacts and higher signal-to-noise ratios, in particular in high-noise situations compared to other state of the art reconstruction algorithms that do not estimate the noise covariance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.