Abstract
Event detection from social media aims at extracting specific or generic unusual happenings, such as, family reunions, earthquakes, and disease outbreaks, among others. This paper introduces a new perspective for the hybrid extraction and clustering of social events from big social data streams. We rely on a hybrid learning model, where supervised deep learning is used for feature extraction and topic classification, whereas unsupervised spatial clustering is employed to determine the event whereabouts. We present ‘Deep-Eware’, a scalable and efficient event-aware big data platform that integrates data stream and geospatial processing tools for the hybrid extraction and dissemination of spatio-temporal events. We introduce a pure incremental approach for event discovery, by developing unsupervised machine learning and NLP algorithms and by computing events’ lifetime and spatial spanning. The system integrates a semantic keyword generation tool using KeyBERT for dataset preparation. Event classification is performed using CNN and bidirectional LSTM, while hierarchical density-based spatial clustering was used for location-inference of events. We conduct experiments over Twitter datasets to measure the effectiveness and efficiency of our system. The results demonstrate that this hybrid approach for spatio-temporal event extraction has a major advantage for real-time spatio-temporal event detection and tracking from social media. This leads to the development of unparalleled smart city applications, such as event-enriched trip planning, epidemic disease evolution, and proactive emergency management services.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.