Abstract

Investigation of the behaviour of deep eutectic solvents (DESs) as novel green solvents in the presence of other solvents is of great interest. In this study the behaviour of a common natural DES, namely choline chloride-glycerol deep eutectic solvent (GDES), was studied in the presence of water. A detailed study of the association of the two solvents was performed by integration of two vibrational spectroscopic methods (FTIR and Raman spectroscopy) followed by multivariate analysis. Moreover, a binary mixture of glycerol (Gly) as one of the liquid constituents of GDES and water was explored under the same conditions. A quintuplet and ternary systems were resolved for GDES-water and Gly-water probes, respectively, using multivariate analysis of global data (multi-technique and multi-experiment data arrangements). The results confirmed that in the presence of water the GDES showed different behaviour from its components. Therefore, a DES can be introduced as an independent solvent with its unique properties. Also, different H-bond interaction energies of GDES and its pure components in the presence of water were shown by theoretical calculations based on a density functional theory framework. To investigate the effects of water on the structure of GDES, molecular dynamics (MD) simulations of GDES-water liquid mixtures were performed at 0.9 mole fraction of water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call