Abstract

To determine metronidazole in water samples, we developed an environmentally friendly, efficient, and straightforward ferrofluid-based liquid-liquid microextraction sample pretreatment technique. It is coupled with a high-performance liquid chromatography-ultraviolet analytical technique known for its sensitivity, speed, and precision. The magnetic separation of metronidazole-containing ferrofluid from the matrix was effortlessly achieved through the application of an external magnetic field, eliminating the need for centrifugation. Response surface optimization was employed to systematically determine the key experimental parameters influencing extraction efficiency, including pH, NaCl concentration, ferrofluid volume, and vortex duration. With a low detection limit (0.116 ng mL−1), a broad linear range between 0.5 and 700 ng mL−1 was achieved at optimal conditions. Additionally, acceptable spiking recoveries (94.3–97.3 %) and RSD values (≤3.7 %) for intra- and inter-day precision were attained in water samples. In conclusion, the effectiveness of the vortex and ferrofluid combination, along with the convenience of collection and elimination of the need for centrifugation, bestows a highly valuable technique for determining metronidazole in water samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call