Abstract

This study proposed a straightforward process to synthesize 2,4‐toluene diisocyanate (TDI)‐functionalized TiO2 nanoparticles in which a cost‐effective linker (TDI) with high reactivity was employed to couple nano‐TiO2 through covalent bonding to a deep eutectic solvent (DES). By this method, DES was successfully immobilized on the TiO2@TDI surface as an adsorbent and stabilizer. The structural, morphological, and physicochemical characteristics of the synthesized nanocatalysts were evaluated using various analytical methods including Fourier transform infrared (FT‐IR) spectroscopy, X‐ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy equipped with energy‐dispersive X‐ray spectroscopy (SEM–EDX), and elemental analysis. The heterogeneity of the catalyst was also examined by a hot filtration test. The obtained TiO2@TDI@DES nanoparticles offered superior catalytic behavior and excellent yield as well as recyclability for the chemoselective oxidation of sulfide into sulfoxide using a green oxidant (hydrogen peroxide). This catalyst exhibited excellent reusability as it can be recovered for six successive cycles with no significant leach or reduction of catalytic efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.