Abstract
In recent years, flexible supercapacitors (FSCs) have gained considerable attention as reliable power supplies for wearable and portable electronic devices. However, optimizing both energy and power densities remains a challenge and requires effective enhancement of two key components: the electrolyte and the electrode. To address this, we have developed a new and efficient approach to FSC fabrication using a ternary nanocomposite of laser-reduced graphene@polyaniline/NiFe₂O₄(LrGO@Pani-NF) as the electrode and stable polymer hydrogels as the electrolyte. Also, we constructed FSC devices using a cross-linked poly (vinyl alcohol)/deep eutectic solvent (DES) gel electrolyte (PVA/ChCl/EG) and a PVA/Polyaniline/Nickel Ferrite gel electrolyte (PVA/Pani/NF). Among these devices, the LrGO@Pani-NF//LrGO@Pani-NF demonstrated a remarkable energy density of 48.4 Wh kg⁻¹ at 401.8 W kg⁻¹ and a long cycle life of 1000 cycles with 96.9 % capacity retention at 2 mA cm⁻². Furthermore, the supercapacitors assembled with the DES gel exhibited excellent stability at higher voltages, operating within a potential window of −3.0–3.0 V. This work not only enhances FSC electrochemical performance with graphene nanocomposite electrodes but also introduces a novel method for FSC design using conductive, stable gel electrolytes, thereby improving energy storage capabilities under harsh conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.