Abstract
A deep etching method for silicon “micro”structures was successfully developed. This wet etching process is based on metal-assisted chemical etching (MACE), which was previously mainly utilized to etch the features that have lateral dimensions of “nanometers.” In this novel MACE, the critical improvement was to promote the “out-of-plane” mass transfer at the metal/Si interface with an ultrathin metal film. This enabled us to etch micrometer-wide holes, which was previously challenging due to the mass transport limitation. In addition, it was found that when ethanol was used as a solvent instead of water, the formation of porous defects was suppressed. Under the optimized etch conditions, deep (>200 μm) and vertical (>88°) holes could be carved out at a fast etch rate (>0.4 μm/min). This novel deep MACE will find utility in applications such as microelectromechanical systems (MEMS) devices or biosensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.