Abstract

Biometric measurements in fetal ultrasound images are one of the most highly demanding medical image analysis tasks that can directly contribute to diagnosing fetal diseases. However, the natural high-speckle noise and shadows in ultrasound data present big challenges for automatic biometric measurement. Almost all the existing dominant automatic methods are two-stage models, where the key anatomical structures are segmented first and then measured, thus bringing segmentation and fitting errors. What is worse, the results of the second-stage fitting are completely dependent on the good performance of first-stage segmentation, i.e., the segmentation error will lead to a larger fitting error. To this end, we propose a novel end-to-end biometric measurement network, abbreviated as E2EBM-Net, that directly fits the measurement parameters. E2EBM-Net includes a cross-level feature fusion module to extract multi-scale texture information, a hard-soft attention module to improve position sensitivity, and center-focused detectors jointly to achieve accurate localizing and regressing of the measurement endpoints, as well as a loss function with geometric cues to enhance the correlations. To our knowledge, this is the first AI-based application to address the biometric measurement of irregular anatomical structures in fetal ultrasound images with an end-to-end approach. Experiment results showed that E2EBM-Net outperformed the existing methods and achieved the state-of-the-art performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call