Abstract

We propose a novel method for drilling of silica glass based on the continuous-wave laser backside irradiation (CW-LBI) phenomenon. The method allows drilling to be performed by single-shot irradiation using a CW laser. A spindle-shaped emission is generated in the bulk glass and is then guided to the glass surface, and at the instant that the beam reaches the surface, the glass material is ejected. The glass ejection process occurs for a time of ~250 μs. A hole that is similar in shape to that of the spindle-shaped emission is left. The hole length tended to increase linearly with increasing laser power. The laser power dependence of the spindle-shaped emission propagation velocity is also linear, and the velocity increases with increasing laser power. The hole diameters were smaller in the case where the laser focus position was set on the glass surface, and these diameters increased with increasing defocusing. The maximum hole depth reached more than 5 mm. Through-hole drilling was demonstrated using a 3-mm-thick glass substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call