Abstract

The deep drawability of additively manufactured stainless steel sheets with a core structure is investigated. By fracture forming limit diagrams it is shown that the additively manufactured sheets reveal good formability. The deep drawing process is analyzed numerically and the numerical models are validated experimentally. The main failure mode is a fracture of the face sheets. No severe deformation of the core structure was encountered, leading to the fact that the parts keep their structural integrity after the deep drawing process. It is shown that the process forces can reasonably be predicted by a modified Siebel’s method. A process window diagram is derived, e.g. showing a maximum deep drawing ratio βmax = 1.4 for honeycomb structures with a relative core density of ρcore = 0.22.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.