Abstract

Even though some of the driver assistant systems have been commercialized to provide safety and convenience to the driver, they can be applied for autonomous driving in limited situations such as highways. In this paper, we propose a supervisor agent that can enhance the driver assistant systems by using deep distributional reinforcement learning. The supervisor agent is trained using end-to-end approach that directly maps both a camera image and LIDAR data into action plan. Because the well-trained network of deep reinforcement learning can lead to unexpected actions, collision avoidance function is added to prevent dangerous situations. In addition, the highway driving case is a stochastic environment with inherent randomness and, thus, its training is performed through the distributional reinforcement learning algorithm, which is specialized for stochastic environment. The optimal action for autonomous driving is selected through the return value distribution. Finally, the proposed algorithm is verified through a highway driving simulator, which is implemented by the Unity ML-agents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.