Abstract
Two popular representation learning paradigms are dictionary learning and deep learning. While dictionary learning focuses on learning “basis” and “features” by matrix factorization, deep learning focuses on extracting features via learning “weights” or “filter” in a greedy layer by layer fashion. This paper focuses on combining the concepts of these two paradigms by proposing deep dictionary learning and show how deeper architectures can be built using the layers of dictionary learning. The proposed technique is compared with other deep learning approaches, such as stacked autoencoder, deep belief network, and convolutional neural network. Experiments on benchmark data sets show that the proposed technique achieves higher classification and clustering accuracies. On a real-world problem of electrical appliance classification, we show that deep dictionary learning excels where others do not yield at-par performance. We postulate that the proposed formulation can pave the path for a new class of deep learning tools.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.