Abstract
A new dichromatic illuminant estimation method using a deep neural network is proposed. Previous methods based on the dichromatic reflection model commonly suffer from inaccurate separation of specularity, thus being limited in their use in a real-world. Recent deep neural network-based methods have shown a significant improvement in the estimation of the illuminant color. However, why they succeed or fail is not explainable easily, because most of them estimate the illuminant color at the network output directly. To tackle these problems, the proposed architecture is designed to learn dichromatic planes and their confidences using a deep neural network with novel losses function. The illuminant color is estimated by a weighted least mean square of these planes. The proposed dichromatic guided learning not only achieves compelling results among state-of-the-art color constancy methods in standard real-world benchmark evaluations, but also provides a map to include color and regional contributions for illuminant estimation, which allow for an in-depth analysis of success and failure cases of illuminant estimation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.