Abstract
BackgroundEven though antibiotics agents are widely used, pneumonia is still one of the most common causes of death around the world. Some severe, fast-spreading pneumonia can even cause huge influence on global economy and life security. In order to give optimal medication regimens and prevent infectious pneumonia's spreading, recognition of pathogens is important. MethodIn this single-institution retrospective study, 2,353 patients with their CT volumes are included, each of whom was infected by one of 12 known kinds of pathogens. We propose Deep Diagnostic Agent Forest (DDAF) to recognize the pathogen of a patient based on ones’ CT volume, which is a challenging multiclass classification problem, with large intraclass variations and small interclass variations and very imbalanced data. ResultsThe model achieves 0.899 ± 0.004 multi-way area under curves of receiver (AUC) for level-I pathogen recognition, which are five rough groups of pathogens, and 0.851 ± 0.003 AUC for level-II recognition, which are 12 fine-level pathogens. The model also outperforms the average result of seven human readers in level-I recognition and outperforms all readers in level-II recognition, who can only reach an average result of 7.71 ± 4.10% accuracy. ConclusionDeep learning model can help in recognition pathogens using CTs only, which might help accelerate the process of etiological diagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.