Abstract

BackgroundThe demosponge Amphimedon queenslandica is amongst the few early-branching metazoans with an assembled and annotated draft genome, making it an important species in the study of the origin and early evolution of animals. Current gene models in this species are largely based on in silico predictions and low coverage expressed sequence tag (EST) evidence.ResultsAmphimedon queenslandica protein-coding gene models are improved using deep RNA-Seq data from four developmental stages and CEL-Seq data from 82 developmental samples. Over 86% of previously predicted genes are retained in the new gene models, although 24% have additional exons; there is also a marked increase in the total number of annotated 3’ and 5’ untranslated regions (UTRs). Importantly, these new developmental transcriptome data reveal numerous previously unannotated protein-coding genes in the Amphimedon genome, increasing the total gene number by 25%, from 30,060 to 40,122. In general, Amphimedon genes have introns that are markedly smaller than those in other animals and most of the alternatively spliced genes in Amphimedon undergo intron-retention; exon-skipping is the least common mode of alternative splicing. Finally, in addition to canonical polyadenylation signal sequences, Amphimedon genes are enriched in a number of unique AT-rich motifs in their 3’ UTRs.ConclusionsThe inclusion of developmental transcriptome data has substantially improved the structure and composition of protein-coding gene models in Amphimedon queenslandica, providing a more accurate and comprehensive set of genes for functional and comparative studies. These improvements reveal the Amphimedon genome is comprised of a remarkably high number of tightly packed genes. These genes have small introns and there is pervasive intron retention amongst alternatively spliced transcripts. These aspects of the sponge genome are more similar unicellular opisthokont genomes than to other animal genomes.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1588-z) contains supplementary material, which is available to authorized users.

Highlights

  • The demosponge Amphimedon queenslandica is amongst the few early-branching metazoans with an assembled and annotated draft genome, making it an important species in the study of the origin and early evolution of animals

  • The best open reading frames (ORFs) were predicted from the representative transcripts generated by PASA (Figure 1A)

  • Aqu2 includes a new member of the POU transcription factor gene family and previously unannotated genes encoding neuronal proteins including the Synapse Differentiation-Induced Protein1-Like (Capucin), a gene expressed in the caudal and putamen brain regions of mouse and human, and a new version of CPEB, a protein involved in memory maintenance [29,30,31,32] (Additional file 1: Figure S2A,B). Amphimedon possesses both conserved and novel transcription termination elements We identified motifs enriched in 10,274 strict 3’ Untranslated region (UTR) that are annotated in Amphimedon

Read more

Summary

Introduction

The demosponge Amphimedon queenslandica is amongst the few early-branching metazoans with an assembled and annotated draft genome, making it an important species in the study of the origin and early evolution of animals. The origin of the fundamental rules governing metazoan multicellularity and morphological complexity can be gleaned through the analysis of the genomes of early branching animals (e.g. sponges, cnidarians, ctenophores and placozoans) [1,2,3,4] and their closely related unicellular holozoans (e.g. choanoflagellates and filastereans) [5,6,7]. Comparative analysis of these genomes has shed. Interpretations of the sponge body plan in the context of metazoan evolution range from it representing a state similar to the last common ancestor of modern animals to it being derived from a morphologically more complex ancestor that possessed a gut, nerves and muscles

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call