Abstract

PurposeTo examine the structure–function relationship in glaucoma between deep defects on visual fields (VF) and deep losses in the circumpapillary retinal nerve fiber layer (cpRNFL) on optical coherence tomography (OCT) circle scans.MethodsThirty two glaucomatous eyes with deep VF defects, as defined by at least one test location worse than ≤ −15 dB on the 10-2 and/or 24-2 VF pattern deviation (PD) plots, were included from 87 eyes with “early” glaucoma (i.e., 24-2 mean deviation better than −6 dB). Using the location of the deep VF points and a schematic model, the location of local damage on an OCT circle scan was predicted. The thinnest location of cpRNFL (i.e., deepest loss) was also determined.ResultsIn 19 of 32 eyes, a region of complete or near complete cpRNFL loss was observed. All 19 of these had deep VF defects on the 24-2 and/or 10-2. All of the 32 eyes with deep VF defects had abnormal cpRNFL regions (red, 1%) and all but 2 had a region of cpRNFL thickness <21 μm. The midpoint of the VF defect and the location of deepest cpRNFL had a 95% limit of agreement within approximately two-thirds of a clock-hour (or 30°) sector (between −22.1° to 25.2°). Individual fovea-to-disc angle (FtoDa) adjustment improved agreement in one eye with an extreme FtoDa.ConclusionsAlthough studies relating local structural (OCT) and functional (VF) measures typically show poor to moderate correlations, there is good qualitative agreement between the location of deep cpRNFL loss and deep defects on VFs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call