Abstract

Over mid-ocean ridges, the interaction between the currents and the topography gives rise to complex flows, which drive the transport properties of biogeochemical constituents, and especially those associated with hydrothermal vents, thus impacting associated ecosystems. This paper describes the circulation in the rift valley along the Azores sector of the North Mid-Atlantic Ridge, using a combination of in-situ data from several surveys and realistic high-resolution modeling. It confirms the presence of a mean deep current with an up-valley branch intensified along the right inner flank of the valley (looking downstream), and a weaker down-valley branch flowing at shallower depth along the opposite flank. The hydrographic properties of the rift-valley water, and in particular the along-valley density gradient that results from a combination of the topographic isolation, the deep flow and the related mixing, are quantified. We also show that the deep currents exhibit significant variability and can be locally intense, with typical values greater than 10 cm/s. Finally, insights on the dynamical forcings of the deep currents and their variability are provided using numerical simulations, showing that tidal forcing of the mean circulation is important and that the overlying mesoscale turbulence triggers most of the variability.

Highlights

  • Mid-Ocean ridges are regions where tectonic plates spread apart and new seafloor is formed (Baker and German, 2004)

  • Abyssal flows at mid-ocean ridges strongly interact with the seafloor, resulting in complex patterns that influence the dynamics of deep-sea ecosystems

  • The habitats of hydrothermal vents are sensitive to the state of the deep ocean, which is critical to their dynamics, their connectivity, and their vulnerability

Read more

Summary

INTRODUCTION

Mid-Ocean ridges are regions where tectonic plates spread apart and new seafloor is formed (Baker and German, 2004). To gain further knowledge on the rift-valley dynamics at a regional scale (from the Oceanographer Fracture Zone up to Menez Gwen hills) as well as its potential implications for transport of biogeochemical species and larvae, we used a high-resolution realistic numerical model to simulate the flow over the North MAR combined with in-situ data gathered from previous surveys The latter are used to describe the rift-valley flow at a few locations and serve as a basis for evaluating and validating the numerical simulation, while the former offers a more continuous view of the dynamics and allows us to go further in understanding the dynamical aspects of the deep circulation.

DATA AND METHODS
Numerical Modeling
Rift Valley Topography
Mean Currents in the Rift-Valley
Rift Valley Hydrography
Temporal Variability
Dynamical Origin and Forcing
DISCUSSION AND CONCLUSION
Findings
DATA AVAILABILITY STATEMENT
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call