Abstract

Click through rate (CTR) prediction of image ads is the core task of online display advertising systems, and logistic regression (LR) has been frequently applied as the prediction model. However, LR model lacks the ability of extracting complex and intrinsic nonlinear features from handcrafted high-dimensional image features, which limits its effectiveness. To solve this issue, in this paper, we introduce a novel deep neural network (DNN) based model that directly predicts the CTR of an image ad based on raw image pixels and other basic features in one step. The DNN model employs convolution layers to automatically extract representative visual features from images, and nonlinear CTR features are then learned from visual features and other contextual features by using fully-connected layers. Empirical evaluations on a real world dataset with over 50 million records demonstrate the effectiveness and efficiency of this method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.