Abstract

Metasomatic reaction zones which developed at marble-pelitic schist contacts in a granulite facies terrane in West Greenland contain a consistent sequence of five mineralogical zones. Outward from the carbonates the zones are characterized by the assemblages grossular-diopside-meionite (I), meionite-anorthite-diopside (II), anorthite-diopside-edenitic hornblende (III), anorthite-enstatite (IV), plagioclase-almandine-sillimanite (V). Sphene is superceded by ilmenite between zones (II) and (III); quartz is present in all zones except zone I. Scapolite, plagioclase, clinopyroxene and mica exhibit a small degree of compositional variation which correlates with distance from the carbonate. These small compositional variations are superimposed on a strong CaO chemical potential gradient. Compositional features, zone distributions and CaO activity calculations demonstrate that the zones developed in response to CaO diffusion along a chemical potential gradient of 2 kcal/m. The CaO source appears to be carbonate rocks which release calcium as decarbonation reactions proceed. The maximum volume of CO2 released in this process, and that released during discontinuous reactions in the marbles, will contribute a total volume of CO2 approximately equivalent to the volume of carbonate in the rock. Calculations demonstrate that a terrane consisting of as little as 8% carbonate will release sufficient CO2 to result in complete dehydration of an amphibolite terrane, at deep crustal conditions. Dehydration through CO2 release will be accomplished either through rapid burial, which would prevent both equilibration of mineral assemblages and CO2 release at intermediate crustal levels, or through diffusion-driven metasomatic reactions which would lead to CO2 release primarily at the high temperatures of deep crustal environments. The latter process would be the dominant CO2 source at deep crustal levels if carbonate rocks occur predominately as relatively thin layers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call