Abstract

Deep cracking of bulky hydrocarbons on zeolite-containing catalysts into light products with high activity, desired selectivity, and long-term stability is demanded but challenging. Herein, the efficient deep cracking of 1,3,5-triisopropylbenzene (TIPB) on intimate ZSM-5@AlSBA-15 composites via tandem catalysis is demonstrated. The rapid aerosol-confined assembly enables the synthesis of the composites composed of a continuous AlSBA-15 matrix decorated with isolated ZSM-5 nanoparticles. The two components at various ZSM-5/AlSBA-15 mass ratios are uniformly mixed with chemically bonded pore walls, interconnected pores, and eliminated external surfaces of nanosized ZSM-5. The typical composite with a ZSM-5/AlSBA-15 mass ratio of 0.25 shows superior performance in TIPB cracking with outstanding activity (≈100% conversion) and deep cracking selectivity (mass of propylene + benzene > 60%) maintained for a long time (> 6h) under a high TIPB flux (2mLh-1), far better (several to tens of times higher) than the single-component and physically mixed catalysts and superior to literature results. The high performance is attributed to the cooperative tandem catalytic process, that is, selective and timely pre-cracking of TIPB to isopropylbenzene (IPB) in AlSBA-15 and subsequently timely diffusion and deep cracking of IPB in nanosized ZSM-5.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.