Abstract

In this article, we propose a novel deep correlated joint network (DCJN) approach for 2-D image-based 3-D model retrieval. First, the proposed method can jointly learn two distinct deep neural networks, which are trained for individual modalities to learn two deep nonlinear transformations for visual feature extraction from the co-embedding feature space. Second, we propose the global loss function for the DCJN, consisting of a discriminative loss and a correlation loss. The discriminative loss aims to minimize the intraclass distance of the extracted features and maximize the interclass distance of such features to a large margin within each modality, while the correlation loss focuses on mitigating the distribution discrepancy across different modalities. Consequently, the proposed method can realize cross-modality feature extraction guided by the defined global loss function to benefit the similarity measure between 2-D images and 3-D models. For a comparison experiment, we contribute the current largest 2-D image-based 3-D model retrieval dataset. Moreover, the proposed method was further evaluated on three popular benchmarks, including the 3-D Shape Retrieval Contest 2014, 2016, and 2018 benchmarks. The extensive comparison experimental results demonstrate the superiority of this method over the state-of-the-art methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.