Abstract

In this paper, a novel computationally intelligent-based electrocardiogram (ECG) signal classification methodology using a deep learning (DL) machine is developed. The focus is on patient screening and identifying patients with paroxysmal atrial fibrillation (PAF), which represents a life threatening cardiac arrhythmia. The proposed approach operates with a large volume of raw ECG time-series data as inputs to a deep convolutional neural networks (CNN). It autonomously learns representative and key features of the PAF to be used by a classification module. The features are therefore learned directly from the large time domain ECG signals by using a CNN with one fully connected layer. The learned features can effectively replace the traditional ad hoc and time-consuming user's hand-crafted features. Our experimental results verify and validate the effectiveness and capabilities of the learned features for PAF patient screening. The main advantages of our proposed approach are to simplify the feature extraction process corresponding to different cardiac arrhythmias and to remove the need for using a human expert to define appropriate and critical features working with a large time-series data set. The extensive simulations and case studies conducted indicate that combining the learned features with other classifiers will significantly improve the performance of the patient screening system as compared to an end-to-end CNN classifier. The effectiveness and capabilities of our proposed ECG DL classification machine is demonstrated and quantitative comparisons with several conventional machine learning classifiers are also provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.