Abstract

We aimed to develop and validate a deep convolutional neural network (DCNN) model for preoperative prediction of microvascular invasion (MVI) in hepatocellular carcinoma (HCC) and its clinical outcomes using contrast-enhanced computed tomography (CECT) in a large population of candidates for surgery. This retrospective study included 1116 patients with HCC who had undergone preoperative CECT and curative hepatectomy. Radiological (R), DCNN, and combined nomograms were constructed in a training cohort (n = 892) respectively based on clinicoradiological factors, DCNN probabilities, and all factors; the performance of each model was confirmed in a validation cohort (n = 244). Accuracy and the AUC to predict MVI were calculated. Disease-free survival (DFS) and overall survival (OS) after surgery were recorded. The proportion of MVI-positive patients was respectively 38.8% (346/892) and 35.7 % (87/244) in the training and validation cohorts. The AUCs of the R, DCNN, and combined nomograms were respectively 0.809, 0.929, and 0.940 in the training cohorts and 0.837, 0.865, and 0.897 in the validation cohort. The combined nomogram outperformed the R nomogram in the training (p < 0.001) and validation (p = 0.009) cohorts. There was a significant difference in DFS and OS between the R, DCNN, and combined nomogram-predicted groups with and without MVI (p < 0.001). The combined nomogram based on preoperative CECT performs well for preoperative prediction of MVI and outcome. • A combined nomogram based on clinical information, preoperative CECT, and DCNN can predict MVI and clinical outcomes of patients with HCC. • DCNN provides added diagnostic ability to predict MVI. • The AUCs of the combined nomogram are 0.940 and 0.897 in the training and validation cohorts, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.