Abstract
Mind wandering (MW) is a ubiquitous phenomenon which reflects a shift in attention from task-related to task-unrelated thoughts. There is a need for intelligent interfaces that can reorient attention when MW is detected due to its detrimental effects on performance and productivity. In this paper, we propose a deep learning model for MW detection using Electroencephalogram (EEG) signals. Specifically, we develop a channel-wise deep convolutional neural network (CNN) model to classify the features of focusing state and MW extracted from EEG signals. This is the first study that employs CNN to automatically detect MW using only EEG data. The experimental results on the collected dataset demonstrate promising performance with 91.78% accuracy, 92.84% sensitivity, and 90.73% specificity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.