Abstract
Helicopters are complex high-order and time-varying nonlinear systems, strongly coupling with aerodynamic forces, engine dynamics, and other phenomena. Therefore, it is a great challenge to investigate system identification for dynamic modeling and adaptive control for helicopters. In this paper, we address the system identification problem as dynamic regression and propose to represent the uncertainties and the hidden states in the system dynamic model with a deep convolutional neural network. Particularly, the parameters of the network are directly learned from the real flight data of aerobatic helicopter. Since the deep convolutional model has a good performance for describing the dynamic behavior of the hidden states and uncertainties in the flight process, the proposed identifier manifests strong robustness and high accuracy, even for untrained aerobatic maneuvers. The effectiveness of the proposed method is verified by various experiments with the real-world flight data from the Stanford Autonomous Helicopter Project. Consequently, an adaptive flight control scheme including a deep convolutional identifier and a backstepping-based controller is presented. The stability of the flight control scheme is rigorously proved by the Lyapunov theory. It reveals that the tracking errors for both the position and attitude of unmanned helicopter asymptotic converge to a small neighborhood of the origin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.