Abstract

High dynamic range (HDR) displays with dual-panels are one type of displays that can provide HDR content. These are composed of a white backlight panel and a colour LCD panel. Local dimming algorithms are used to control the backlight panel in order to reproduce content with high dynamic range and contrast at a high fidelity. However, existing local dimming algorithms usually process low dynamic range (LDR) images, which are not suitable for processing HDR images. In addition, these methods use hand-crafted features to estimate the backlight values, which may not be suitable for many kind of images. In this work, a novel deep learning based local dimming method is proposed for rendering HDR images on dual-panel HDR displays. The method uses a Convolutional Neural Network (CNN) to directly predict backlight values, using as input the HDR image that is to be displayed. The model is designed and trained via a controllable power parameter that allows a user to trade off between power and quality. The proposed method is evaluated against seven other methods on a test set of 105 HDR images, using a variety of quantitative quality metrics. Results demonstrate improved display quality and better power consumption when using the proposed method compared to the best alternatives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.