Abstract

Data-driven deep learning algorithms provide accurate prediction of high-level quantum-chemical molecular properties. However, their inputs must be constrained to the same quantum-chemical level of geometric relaxation as the training dataset, limiting their flexibility. Adopting alternative cost-effective conformation generative methods introduces domain-shift problems, deteriorating prediction accuracy. Here we propose a deep contrastive learning-based domain-adaptation method called Local Atomic environment Contrastive Learning (LACL). LACL learns to alleviate the disparities in distribution between the two geometric conformations by comparing different conformation-generation methods. We found that LACL forms a domain-agnostic latent space that encapsulates the semantics of an atom's local atomic environment. LACL achieves quantum-chemical accuracy while circumventing the geometric relaxation bottleneck and could enable future application scenarios such as inverse molecular engineering and large-scale screening. Our approach is also generalizable from small organic molecules to long chains of biological and pharmacological molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.