Abstract

This work proposes an approach for latent-dynamics learning that exactly enforces physical conservation laws. The method comprises two steps. First, the method computes a low-dimensional embedding of the high-dimensional dynamical-system state using deep convolutional autoencoders. This defines a low-dimensional nonlinear manifold on which the state is subsequently enforced to evolve. Second, the method defines a latent-dynamics model that associates with the solution to a constrained optimization problem. Here, the objective function is defined as the sum of squares of conservation-law violations over control volumes within a finite-volume discretization of the problem; nonlinear equality constraints explicitly enforce conservation over prescribed subdomains of the problem. Under modest conditions, the resulting dynamics model guarantees that the time-evolution of the latent state exactly satisfies conservation laws over the prescribed subdomains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.