Abstract

Data transmission and storage are inseparable from compression technology. Compressed sensing directly undersamples and reconstructs data at a much lower sampling frequency than Nyquist, which reduces redundant sampling. However, the requirement of data sparsity in compressed sensing limits its application. The combination of neural network-based generative models and compressed sensing breaks the limitation of data sparsity. Compressed sensing for extreme observations can reduce costs, but the reconstruction effect of the above methods in extreme observations is blurry. We addressed this problem by proposing an end-to-end observation and reconstruction method based on a deep compressed sensing generative model. Under RIP and S-REC, data can be observed and reconstructed from end to end. In MNIST extreme observation and reconstruction, end-to-end feasibility compared to random input is verified. End-to-end reconstruction accuracy improves by 5.20% over random input and SSIM by 0.2200. In the Fashion_MNIST extreme observation and reconstruction, it is verified that the reconstruction effect of the deconvolution generative model is better than that of the multi-layer perceptron. The end-to-end reconstruction accuracy of the deconvolution generative model is 2.49% higher than that of the multi-layer perceptron generative model, and the SSIM is 0.0532 higher.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.