Abstract
AbstractFingerphotos are fingerprint images acquired using a basic smartphone camera. Although significant progress has been made in matching fingerphotos, the security of these authentication mechanisms is challenged by presentation attacks (PAs). A presentation attack can subvert a biometric system by using simple tools such as a printout or a photograph displayed on a device. The goal of this research is to improve the performance of fingerphoto presentation attack detection (PAD) algorithms by exploring the effectiveness of deep representations derived from various color spaces. For each color space, different convolutional neural networks (CNNs) are trained and the most accurate is selected. The individual scores output by the selected CNNs are combined to yield the final decision. Experiments were carried out on the IIITD Smartphone Fingerphoto Database, and results demonstrate that integrating various color spaces, including the commonly used RGB, outperforms the existing fingerphoto PAD algorithms.KeywordsColorspacePresentation attack detectionFingerPhoto
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.