Abstract

Existing deep hashing approaches fail to fully explore semantic correlations and neglect the effect of linguistic context on visual attention learning, leading to inferior performance. This paper proposes a dual-stream learning framework, dubbed Deep Collaborative Discrete Hashing (DCDH), which constructs a discriminative common discrete space by collaboratively incorporating the shared and individual semantics deduced from visual features and semantic labels. Specifically, the context-aware representations are generated by employing the outer product of visual embeddings and semantic encodings. Moreover, we reconstruct the labels and introduce the focal loss to take advantage of frequent and rare concepts. The common binary code space is built on the joint learning of the visual representations attended by language, the semantic-invariant structure construction and the label distribution correction. Extensive experiments demonstrate the superiority of our method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.