Abstract

This article describes a method to Human Activity Recognition (HAR) challenges based on data from wearable and smartphone sensors. We introduced a deep learning model and recognition system that is a combination of CNN (Convolutional Neural Network) and GRU (Gated Recurrent Unit) to improve results. Preferably, the data have been collected from several wearables as the participants go about their everyday activities. The convolutional neural network (CNN) deployed to improve the extraction of features at various scales. The derived attributes are then inserted into the gated recurrent unit (GRU), which labels features and enhances feature representation by understanding temporal connections. The CNN-GRU model uses a fully inte-grated (FC) layer, which is employed to hook up the feature maps with the classification standard. Three publicly accessible datasets, UCIHAR, OPPORTUNITY, and MHEALTH, were used to test the model's performance, with accuracy rates of 98.74%, 99.05%, and 99.53%, respectively. The outcomes show that the proposed model transcends some of the notified results in terms of activity detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.