Abstract

Deep clustering utilizes deep neural networks to learn feature representation that is suitable for clustering tasks. Though demonstrating promising performance in various applications, we observe that existing deep clustering algorithms either do not well take advantage of convolutional neural networks or do not considerably preserve the local structure of data generating distribution in the learned feature space. To address this issue, we propose a deep convolutional embedded clustering algorithm in this paper. Specifically, we develop a convolutional autoencoders structure to learn embedded features in an end-to-end way. Then, a clustering oriented loss is directly built on embedded features to jointly perform feature refinement and cluster assignment. To avoid feature space being distorted by the clustering loss, we keep the decoder remained which can preserve local structure of data in feature space. In sum, we simultaneously minimize the reconstruction loss of convolutional autoencoders and the clustering loss. The resultant optimization problem can be effectively solved by mini-batch stochastic gradient descent and back-propagation. Experiments on benchmark datasets empirically validate the power of convolutional autoencoders for feature learning and the effectiveness of local structure preservation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call