Abstract

We develop deep clustering survival machines to simultaneously predict survival information and characterize data heterogeneity that is not typically modeled by conventional survival analysis methods. By modeling timing information of survival data generatively with a mixture of parametric distributions, referred to as expert distributions, our method learns weights of the expert distributions for individual instances based on their features discriminatively such that each instance's survival information can be characterized by a weighted combination of the learned expert distributions. Extensive experiments on both real and synthetic datasets have demonstrated that our method is capable of obtaining promising clustering results and competitive time-to-event predicting performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.