Abstract

To suppress noise and artifacts caused by the reduced radiation exposure in low-dose computed tomography, several deep learning (DL)-based image restoration methods have been proposed over the past few years. Many of these popular DL-based methods adopt an encoder–decoder framework, for instance, the residual encoder–decoder convolutional neural network. However, this popular framework may suffer from information loss for continual downsampling operations. In this article, deep cascaded residual networks (DCRNs) are proposed to optimize the popular encoder–decoder network. First, cross up- and downsampling operations as well as attention extraction are substitutes for the strict “downsampling and then upping” principle. What is more, four hybrid loss functions, namely, mean absolute error, edge loss, perceptual loss and adversarial loss, are engaged to achieve better visual effects and suppress noise. The experiments are conducted on three individual clinical CT datasets: dental CT data collected with a scanner manufactured by Zhongke Tianyue Company (ZTC), data from the American Association of Physicists in Medicine (AAPM) Challenge, and data collected with a commercial CT scanner from United Imaging Healthcare (UIH). The experimental results indicate the effective noise reduction and detail preservation capabilities of the proposed methods under different radiation dose-reduction strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call