Abstract

Understanding the morphology and hemodynamics of cerebral vasculature at large penetration depths and microscale resolution is fundamentally important to decipher brain diseases. Among the various imaging technologies, three-photon (3P) microscopy is of significance by virtue of its deep-penetrating capability and submicron resolution, which especially benefits in vivo vascular imaging. Aggregation-induced emission luminogens (AIEgens) have been recognized to be extraordinarily powerful as 3P probes. However, systematic studies on the structure-performance relationship of 3P AIEgens have been seldom reported. Herein, a series of AIEgens has been designed and synthesized. By intentionally introducing benzene rings onto electron donors (D) and acceptors (A), the molecular distortion, conjugation strength, and the D-A relationship can be facilely manipulated. Upon encapsulation with DSPE-PEG2000, the optimized AIEgens are successfully applied for 3P microscopy with emission in the far-red/near-infrared-I (NIR-I, 700-950 nm) region under the near-infrared-III (NIR-III, 1600-1870 nm) excitation. Impressively, using mice with an opened skull, vasculature within 1700 μm and a microvessel with a diameter of 2.2 μm in deep mouse brain were clearly visualized. In addition, the hemodynamics of blood vessels were well-characterized. Thus, this work not only proposes a molecular design strategy of 3P AIEgens but also promotes the performance of 3P imaging in cerebral vasculature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.