Abstract

BackgroundCombat post-traumatic stress disorder (PTSD) involves significant suffering, impairments in social and occupational functioning, substance use and medical comorbidity, and increased mortality from suicide and other causes. Many veterans continue to suffer despite current treatments. Deep brain stimulation (DBS) has shown promise in refractory movement disorders, depression and obsessive-compulsive disorder, with deep brain targets chosen by integration of clinical and neuroimaging literature. The basolateral amygdala (BLn) is an optimal target for high-frequency DBS in PTSD based on neurocircuitry findings from a variety of perspectives. DBS of the BLn was validated in a rat model of PTSD by our group, and limited data from humans support the potential safety and effectiveness of BLn DBS.Methods/DesignWe describe the protocol design for a first-ever Phase I pilot study of bilateral BLn high-frequency DBS for six severely ill, functionally impaired combat veterans with PTSD refractory to conventional treatments. After implantation, patients are monitored for a month with stimulators off. An electroencephalographic (EEG) telemetry session will test safety of stimulation before randomization to staggered-onset, double-blind sham versus active stimulation for two months. Thereafter, patients will undergo an open-label stimulation for a total of 24 months. Primary efficacy outcome is a 30% decrease in the Clinician Administered PTSD Scale (CAPS) total score. Safety outcomes include extensive assessments of psychiatric and neurologic symptoms, psychosocial function, amygdala-specific and general neuropsychological functions, and EEG changes. The protocol requires the veteran to have a cohabiting significant other who is willing to assist in monitoring safety and effect on social functioning. At baseline and after approximately one year of stimulation, trauma script-provoked 18FDG PET metabolic changes in limbic circuitry will also be evaluated.DiscussionWhile the rationale for studying DBS for PTSD is ethically and scientifically justified, the importance of the amygdaloid complex and its connections for a myriad of emotional, perceptual, behavioral, and vegetative functions requires a complex trial design in terms of outcome measures. Knowledge generated from this pilot trial can be used to design future studies to determine the potential of DBS to benefit both veterans and nonveterans suffering from treatment-refractory PTSD.Trial registrationPCC121657, 19 March 2014.Electronic supplementary materialThe online version of this article (doi:10.1186/1745-6215-15-356) contains supplementary material, which is available to authorized users.

Highlights

  • Combat post-traumatic stress disorder (PTSD) involves significant suffering, impairments in social and occupational functioning, substance use and medical comorbidity, and increased mortality from suicide and other causes

  • While the rationale for studying Deep brain stimulation (DBS) for PTSD is ethically and scientifically justified, the importance of the amygdaloid complex and its connections for a myriad of emotional, perceptual, behavioral, and vegetative functions requires a complex trial design in terms of outcome measures. Knowledge generated from this pilot trial can be used to design future studies to determine the potential of DBS to benefit both veterans and nonveterans suffering from treatment-refractory PTSD

  • The findings reviewed suggest the possibility that patients whose PTSD symptoms do not respond to exposure therapy or other interventions may have unremitting amygdala hyperarousal that is resistant to, or insufficiently suppressed by, cognitive efforts normally mediated by ventromedial prefrontal cortex (vmPFC) activation

Read more

Summary

Introduction

Combat post-traumatic stress disorder (PTSD) involves significant suffering, impairments in social and occupational functioning, substance use and medical comorbidity, and increased mortality from suicide and other causes. Potential benefits exist for patients whose illness does not respond to currently available, lower risk treatments and continue to suffer severe symptomatic and functional impairment, and these benefits depend on the plausibility of benefit from direct neurocircuitry modulation with DBS electrodes. Risks include those of the surgical procedure, implanted hardware, and of stimulation, along with potential ethical and social implications. The risks of chronic, treatment-resistant combat post-traumatic stress disorder PTSD is a serious psychiatric condition that affects an estimated 6.8% of the US population at some point in their lifetime [1] with a 12-month prevalence of 3.5% [2]. Persistent severe PTSD was found to be associated with significant distress and dysfunction

Objectives
Methods
Findings
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.