Abstract

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) alleviates Parkinson's disease (PD) symptoms. Although widely used, the mechanisms of action are still unknown. In an attempt to elucidate those mechanisms, we have previously demonstrated that STN-DBS increases striatal extracellular dopamine (DA) metabolites in anaesthetized rats. PD being a movement disorder, it remains to be determined whether these findings are related to any relevant motor or behavioural changes. Thus, this study investigates concomitant behavioural changes during STN-DBS and extracellular striatal DA metabolites measured using microdialysis in freely moving 6-hydroxydopamine-lesioned rats. STN-DBS induced an increase of striatal DA metabolites in awake, freely moving animals. Furthermore, we observed concomitant contralateral circling behaviour. Taken together, these results suggest that STN-DBS could disinhibit (consequently activate) substantia nigra compacta neurons via inhibition of gamma-aminobutyric acid-ergic substantia nigra reticulata neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.