Abstract

Parkinson’s disease (PD) can produce postural abnormalities of the standing body position such as kyphosis. We investigated the effects of PD, deep brain stimulation (DBS) in the subthalamic nucleus (STN), vision and adaptation on body position in a well-defined group of patients with PD in quiet standing and during balance perturbations. Ten patients with PD and 25 young and 17 old control participants were recruited. Body position was measured with 3D motion tracking of the ankle, knee, hip, shoulder and head. By taking the ankle as reference, we mapped the position of the joints during quiet standing and balance perturbations through repeated calf muscle vibration. We did this to explore the effect of PD, DBS in the STN, and vision on the motor learning process of adaptation in response to the repeated stimulus. We found that patients with PD adopt a different body position with DBS ON vs. DBS OFF, to young and old controls, and with eyes open vs. eyes closed. There was an altered body position in PD with greater flexion of the head, shoulder and knee (p≤0.042) and a posterior position of the hip with DBS OFF (p≤0.014). With DBS ON, body position was brought more in line with the position taken by control participants but there was still evidence of greater flexion at the head, shoulder and knee. The amplitude of movement during the vibration period decreased in controls at all measured sites with eyes open and closed (except at the head in old controls with eyes open) showing adaptation which contrasted the weaker adaptive responses in patients with PD. Our findings suggest that alterations of posture and greater forward leaning with repeated calf vibration, are independent from reduced movement amplitude changes. DBS in the STN can significantly improve body position in PD although the effects are not completely reversed. Patients with PD maintain adaptive capabilities by leaning further forward and reducing movement amplitude despite their kyphotic posture.

Highlights

  • Postural abnormalities, such as kyphosis, are common in patients with Parkinson’s disease (PD) and increase in severity with disease progression

  • Fifty-two consenting participants were recruited across three groups: a Parkinson’s disease group (PD) with deep brain stimulation (DBS) electrodes implanted in the subthalamic nucleus (STN); a control group of young adults; and a control group of older adults

  • We found that patients with PD adopt a different body position with DBS ON vs. DBS OFF, to young and old controls, and with eyes open vs. eyes closed

Read more

Summary

Introduction

Postural abnormalities, such as kyphosis, are common in patients with Parkinson’s disease (PD) and increase in severity with disease progression. One reason for this is that dysfunction of the basal ganglia in PD can lead to alterations of resting body position, muscle tone and inhibition of the latissimus dorsi muscles [1]. Deep brain stimulation (DBS) in the subthalamic nucleus (STN) can reduce the degree of trunk flexion [4,5,6] a recent meta-analysis [7] has indicated variable effects. Further analysis appears to suggest that the effectiveness of DBS in the STN on trunk flexion is age dependent [8]. Given the potential impact of DBS in the STN on postural abnormalities in PD, we have conducted a double-blind randomized study to investigate the effectiveness of DBS in the STN on body position in quiet upright stance and from balance perturbations

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call