Abstract

Three primitive photoreceptors [melanopsin (Opn4), neuropsin/opsin5 (Opn5) and vertebrate ancient opsin (VAOpn)] were reported as possible avian deep-brain photoreceptors (DBPs) involved in the perception of photoperiodic information affecting the onset and development of reproduction. The objective of this study was to determine the effect of long-day photostimulation and/or sulfamethazine treatment (SMZ, a compound known to advance light-induced testes development) on gene expression of DBPs and key hypothalamic and pituitary genes involved in avian reproductive function. Two-week old chicks were randomly selected into four experimental groups: short-day control (SC, LD8:16), short-day+SMZ (SS, LD8:16, 0.2% diet SMZ), long-day control (LC, LD16:8), and long-day+SMZ (LS, LD16:8, 0.2% diet SMZ). Birds were sampled on days 3, 7, and 28 after initiation of a long-day photoperiod and/or SMZ dietary treatments. Three brain regions [septal–preoptic, anterior hypothalamic (SepPre/Ant-Hypo) region, mid-hypothalamic (Mid-Hypo) region, posterior-hypothalamic (Post-Hypo) region], and anterior pituitary gland were dissected. Using quantitative real-time RT-PCR, we determined changes of expression levels of genes in distinct brain regions; Opn4 and Opn5 in SepPre/Ant-Hypo and Post-Hypo regions and, VAOpn in the Mid-Hypo region. Long-day treatment resulted in a significantly elevated testes weight on days 7 and 28 compared to controls, and SMZ augmented testes weight in both short- and long-day treatment after day 7 (P<0.05). Long-day photoperiodic treatment on the third day unexpectedly induced a large 8.4-fold increase of VAOpn expression in the Mid-Hypo region, a 15.4-fold increase of Opn4 and a 97.8-fold increase of Opn5 gene expression in the Post-Hypo region compared to SC birds (P<0.01). In contrast, on days 7 and 28, gene expression of the three DBPs was barely detectable. LC group showed a significant increase in GnRH-1 and TRH mRNA in the Mid-Hypo compared to SC on day 3. Pituitary LHβ and FSHβ mRNA were significantly elevated in LC and LS groups compared to SC on days 3 and 7 (P<0.05). On days 3 and 7, TSHβ mRNA level was significantly elevated by long-day treatment compared to the SC groups (P<0.05). Results suggest that long-day photoperiodic activation of DBPs is robust, transient, and temporally related with neuroendocrine genes involved in reproductive function. Additionally, results indicate that two subsets of GnRH-1 neurons exist based upon significantly different gene expression from long-day photostimulation and long-day plus SMZ administration. Taken together, the data indicate that within 3days of a long-day photoperiod, an eminent activation of all three types of DBPs might be involved in priming the neuroendocrine system to activate reproductive function in birds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.