Abstract

To achieve high-efficiency deep-blue electroluminescence satisfying Rec.2020 standard blue gamut, two thermally activated delayed fluorescent (TADF) emitters are developed: 5-(2,12-di-tert-butyl-5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracen-7-yl)-10,10-diphenyl-5,10-dihydrodibenzo[b,e][1,4]azasiline (TDBA-PAS) and 10-(2,12-di-tert-butyl-5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracen-7-yl)-9,9-diphenyl-9,10-dihydroacridine (TDBA-DPAC). Inheriting from their parented organoboron multi-resonance core, both emitters show very promising deep-blue emissions with relatively narrow full width at half-maximum (FWHM, ≈50nm in solution), high photoluminescence quantum yield (up to 92.3%), and short emission lifetime (≤2.49µs) with fast reverse intersystem crossing (>106 s-1 ) in doped films. More importantly, replacing the spiro-centered sp3 C atom (TDBA-DPAC) with the larger-radius sp3 Si atom (TDBA-PAS), enhanced conformational heterogeneities in bulky-group-shielded TADF molecules are observed in solution, doped film, and device. Consequently, OLEDs based on TDBA-PAS retain high maximum external quantum efficiencies ≈20% with suppressed efficiency roll-off and color index close to Rec.2020 blue gamut over a wide doping range of 10-50 wt%. This study highlights a new strategy to restrain spectral broadening and redshifting and efficiency roll-off in the design of deep-blue TADF emitters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.