Abstract

A novel bis-4Ph-substituted 9,10-dipehnylanthracene deep blue [1931 CIE (0.15, 0.08)] fluorescent compound, AnB4Ph, has been synthesized and characterized for organic light-emitting diode (OLED) applications. Our experimental study of AnB4Ph excludes the possibility of triplet-triplet annihilation, hybridized local and charge transfer, or thermally activated delayed fluorescent characteristics of the material. Since the solid-state photoluminescence quantum yield of AnB4Ph was determined to be 48%, assuming a 100% for the charge recombination efficiency, the light outcoupling efficiency (ηout) of an AnB4Ph non-doped OLED achieving an external quantum efficiency (EQE) of 5.3% is at least 44%, which is more than twofold higher than 20% for conventional OLEDs. Both grazing incidence wide-angle X-ray scattering (GIWAXS) and angle-dependent photoluminescence (ADPL) measurements reveal AnB4Ph having a high value of order parameter (SGIWAXS) of 0.61 for a ππ stacking along the normal direction and an orientation order parameter (SADPL) for a horizontal emitting dipole moment of -0.50 or Θ (horizontal-dipole ratios) of 100%, respectively. Otherwise, a refractive index (n) measurement provides a n = 1.80 for AnB4Ph thin films. Based on ηout = 1.2 × n-2, the calculated ηout is 37%, which is also in accordance with the results of GIWAXS and ADPL. We have also fabricated the classical fluorescent DPAVBi-doped AnB4Ph OLEDs, which display a true blue [1931 CIE (0.15 and 0.16)] electroluminescence with a high efficiency (EQE = 6.9%), surpassing the conventional ∼5% EQE. Based on an ηout of 42% for DPAVBi-doped AnB4Ph OLEDs, our studies suggest that the extremely horizontally aligned AnB4Ph host material exerts the same horizontal alignment on the DPAVBi dopant molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call