Abstract

Low-dimension metal halide perovskites are attractive for bandgap tunable optoelectronic materials. Among them, 1-D CsPbBr3 quantum wires (QWs) are emerging as promising deep-blue luminescent material. However, the growth dynamics of 1-D perovskite QWs are intricate, making the study and control of 1-D QWs highly challenging. In this study, a strategy for controlling both the length and width of the CsPbBr3 QWs was realized. The temperature-dependent isotropic growth mechanism was revealed and employed as the main tool for the oriented growth of 1-D CsPbBr3 QWs for various aspect ratios. Our results pave the way for the controlled synthesis of ultrasmall perovskite nanocrystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.