Abstract
A cognition learning algorithm based on a deep belief network and inertia weight Particle Swarm Optimization (PSO) is presented and examined in a humanoid robot. The psychology concepts were adopted from Thinking, Fast and Slow by Daniel Kahneman. The human brain comprises two systems, System 1 and System 2. Based on their characteristics, System 1 and System 2 handle different tasks during cerebration. In this study, Deep Belief Network (DBN) is trained to construct the function of System 1 for the rapid reaction. On the other hand, PSO is applied to build System 2 for the slow and complicated brain behavior. Through the cooperation of System 1 and System 2, the proposed cognition learning algorithm can apply the psychology theories to allow the humanoid robot for learning the suitable pitching postures autonomously. In the experiments conducted in this study, the robot was trained for only five selected points and was then asked to throw precisely to nine points. The proposed algorithm provided 100% accuracy in the robot pitching game. The feasibility of the proposed algorithm was thus verified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.