Abstract

Solar power is a type of renewable energy system that uses solar energy to produce electricity, and is regarded as one of the most important power sources in Taiwan. Since sunshine duration affects the amount of energy that can be generated by a solar power, the seasons of the year are important factors that should be considered for accurate solar power prediction. In the last decade, the use of artificial intelligence for forecasting systems have been quite popular, and the deep belief network (DBN) models started getting more attention. In this study, a seasonal deep belief network (SDBN) was developed to forecast monthly solar power output data. The SDBN was constructed by combining seasonal decomposition method and DBN. Further, this study used monthly solar power output data from the Taiwan Power Company. The results indicated that the proposed forecasting system demonstrated a superior performance in terms of forecasting accuracy. Also, the performance of autoregressive integrated moving average (ARIMA), generalized regression neural network (GRNN), and DBN obtained from a separate study were compared to the performance of the proposed SDBN model and showed that the latter was better than the other three models. Thus, the SDBN model can be used as an alternative method for monthly solar power output data forecasting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.