Abstract

Pattern identification (PI) is a diagnostic method used in Traditional East Asian medicine (TEAM) to select appropriate and personalized acupuncture points and herbal medicines for individual patients. Developing a reproducible PI model using clinical information is important as it would reflect the actual clinical setting and improve the effectiveness of TEAM treatment. In this paper, we suggest a novel deep learning-based PI model with feature extraction using a deep autoencoder and k-means clustering through a cross-sectional study of sleep disturbance patient data. The data were obtained from an anonymous electronic survey in the Republic of Korea Army (ROKA) members from August 16, 2021, to September 20, 2021. The survey instrument consisted of six sections: demographics, medical history, military duty, sleep-related assessments (Pittsburgh sleep quality index (PSQI), Berlin questionnaire, and sleeping environment), diet/nutrition-related assessments [dietary habit survey questionnaire and nutrition quotient (NQ)], and gastrointestinal-related assessments [gastrointestinal symptom rating scale (GSRS) and Bristol stool scale]. Principal component analysis (PCA) and a deep autoencoder were used to extract features, which were then clustered using the k-means clustering method. The Calinski-Harabasz index, silhouette coefficient, and within-cluster sum of squares were used for internal cluster validation and the final PSQI, Berlin questionnaire, GSRS, and NQ scores were used for external cluster validation. One-way analysis of variance followed by the Tukey test and chi-squared test were used for between-cluster comparisons. Among 4,869 survey responders, 2,579 patients with sleep disturbances were obtained after filtering using a PSQI score of >5. When comparing clustering performance using raw data and extracted features by PCA and the deep autoencoder, the best feature extraction method for clustering was the deep autoencoder (16 nodes for the first and third hidden layers, and two nodes for the second hidden layer). Our model could cluster three different PI types because the optimal number of clusters was determined to be three via the elbow method. After external cluster validation, three PI types were differentiated by changes in sleep quality, dietary habits, and concomitant gastrointestinal symptoms. This model may be applied to the development of artificial intelligence-based clinical decision support systems through electronic medical records and clinical trial protocols for evaluating the effectiveness of TEAM treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.