Abstract
Nowadays, cervical cancer has emerged as one of the major causes of death and incredibly difficult to identify. In this research, three novel methods have been developed for the automatic detection and classification of cervical cancer in Pap images. There are five steps in this framework which includes data collection, preprocessing, segmentation, feature extraction, and classification of images. The proposed method is implemented using Herlev Pap smear data set. The input image from the data set is pre-processed by using an Anisotropic Diffusion Filter with Unsharp Masking technique that removes the noise in the Pap data. In the next step, an enhanced image sequence is segmented automatically by the proposed Advance Map-Based Superpixel Segmentation (AMBSS) algorithm. Finally, cervix cancer images are procured by utilizing an AMBSS and classified by Support Vector Machine classifier. The accuracy obtained is 85.4%. In order to improve the accuracy AMBSS with quasi newton-based Feed Forward Neural Network classification is used and the accuracy of 96.0% is obtained. Furthermore, AMBSS with Deep auto encoder-based Extreme Learning Machine classification is performed and achieved the accuracy of 99.1%. The findings show that the precision of classification typically exceeds other intelligent methods previously applied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.