Abstract

Although deep learning has been applied to successfully address many data mining problems, relatively limited work has been done on deep learning for anomaly detection. Existing deep anomaly detection methods, which focus on learning new feature representations to enable downstream anomaly detection methods, perform indirect optimization of anomaly scores, leading to data-inefficient learning and suboptimal anomaly scoring. Also, they are typically designed as unsupervised learning due to the lack of large-scale labeled anomaly data. As a result, they are difficult to leverage prior knowledge (e.g., a few labeled anomalies) when such information is available as in many real-world anomaly detection applications. This paper introduces a novel anomaly detection framework and its instantiation to address these problems. Instead of representation learning, our method fulfills an end-to-end learning of anomaly scores by a neural deviation learning, in which we leverage a few (e.g., multiple to dozens) labeled anomalies and a prior probability to enforce statistically significant deviations of the anomaly scores of anomalies from that of normal data objects in the upper tail. Extensive results show that our method can be trained substantially more data-efficiently and achieves significantly better anomaly scoring than state-of-the-art competing methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.