Abstract

Wind power is one of the fastest-growing renewable energy sectors instrumental in the ongoing decarbonization process. However, wind turbines are subjected to a wide range of dynamic loads which can cause more frequent failures and downtime periods, leading to ever-increasing attention to effective Condition Monitoring strategies. In this paper, we propose a novel unsupervised deep anomaly detection framework to detect anomalies in wind turbines based on SCADA data. We introduce a promising neural architecture, namely a Graph Convolutional Autoencoder for Multivariate Time series, to model the sensor network as a dynamical functional graph. This structure improves the unsupervised learning capabilities of Autoencoders by considering individual sensor measurements together with the nonlinear correlations existing among signals. On this basis, we developed a deep anomaly detection framework that was validated on 12 failure events occurred during 20 months of operation of four wind turbines. The results show that the proposed framework successfully detects anomalies and anticipates SCADA alarms by outperforming other two recent neural approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.