Abstract
A SF6/Ar inductively coupled plasma (ICP) technique was investigated to improve etching of proton exchanged LiNbO3. The influences of He backside cooling, power, and gas flows on characteristics such as etching rate, sidewall slope angle, and surface roughness were investigated. Total gas flow is a key parameter that affects etching results, and an optimized gas flow (50 sccm) was used for lengthy etching processes (30 min). Deep (>3 μm) and highly anisotropic etching, as well as ultra smooth LiNbO3 surfaces were achieved in a single-step run. The authors’ proposed method has achieved the deepest, most vertical, minimal residue structure yet reported for single-step ICP etching.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.